Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 34(102), p. 12224-12229, 2005

DOI: 10.1073/pnas.0503880102

Links

Tools

Export citation

Search in Google Scholar

Beyond affect: A role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Prior work has highlighted the role of genetic variation within the repetitive sequence in the transcriptional control region of the serotonin (5-HT) transporter gene ( 5-HTT , SLC6A4 ) in modulating amygdala and prefrontal activation to negative emotional stimuli. However, these studies have not explicitly tested the assumption that the control condition (neutral baseline) does not itself produce changes in activation as a function of 5-HTT genotype. Using a fixation baseline condition, we show that variation in 5-HTT genotype is associated with differential activation to negative, positive, and neutral stimuli in limbic, striatal, and cortical regions. We replicate earlier reports of increased amygdala activation to negative, relative to neutral, stimuli, but then show that these differences are driven by decreased activation to neutral stimuli, rather than increased activation to negative stimuli, in carriers of the 5-HTT short allele. Using high-resolution structural images and automated processes to test for brain volume and gray matter density, we further report significant differences, as a function of 5-HTT genotype, in frontal cortical regions, anterior cingulate, and cerebellum. These functional and structural differences suggest a much broader role for 5-HT transport efficiency in brain processes than previously thought. 5-HTT genotype affects neural systems controlling affective, cognitive, and motor processes.