Published in

American Chemical Society, Analytical Chemistry, 18(85), p. 8809-8816, 2013

DOI: 10.1021/ac402003v

Links

Tools

Export citation

Search in Google Scholar

Integrated Digital Microfluidic Platform for Voltammetric Analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Digital microfluidics (DMF) is an emerging technique for manipulating small volumes of liquids. DMF is particularly well suited for analytical applications as it allows automated handling of discrete samples, and it has been integrated with several inline analysis techniques. However, examples of the integration of DMF with electroanalytical methods are notably scarce, and those that have been reported rely on external electrodes that impose limitations on complexity. To combine the full capabilities of DMF with voltammetry, we designed a platform featuring a three-electrode electrochemical cell integrated in a microfabricated DMF device, removing the need for external electrodes and allowing for complete droplet control. The performance of the DMF/voltammetry system is comparable to that of a commercial screen printed electrode, and the new platform was applied to generating a calibration series for acetaminophen with a limit of detection of 76 μM and good precision (4% average RSD), all with minimal human intervention. We propose that this platform and variations thereof may be a useful new tool for microscale electroanalysis and will be a complementary system to existing inline analysis techniques for DMF.