Published in

American Association for Cancer Research, Molecular Cancer Therapeutics, 4(12), p. 520-529, 2013

DOI: 10.1158/1535-7163.mct-12-0880

Links

Tools

Export citation

Search in Google Scholar

Quantitative Chemical Proteomics Profiling Differentiates Erlotinib from Gefitinib inEGFRWild-Type Non–Small Cell Lung Carcinoma Cell Lines

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Although both erlotinib and gefitinib target the EGF receptor (EGFR), erlotinib is effective in patients with EGFR wild-type or mutated tumors, whereas gefitinib is only beneficial for patients with activating mutations. To determine whether these differences in clinical outcomes can be attributed to their respective protein interaction profiles, a label-free, quantitative chemical proteomics study was conducted. Using this method, 24 proteins were highlighted in the binding profiles of erlotinib and gefitinib. Unlike gefinitib, erlotinib displaced the ternary complex formed by integrin-linked kinase (ILK), α-parvin, and PINCH (IPP). The docking of erlotinib in the three-dimensional structure of ILK showed that erlotinib has the ability to bind to the ATP-binding site, whereas gefitinib is unlikely to bind with high affinity. As the IPP complex has been shown to be involved in epithelial-to-mesenchymal transition (EMT) and erlotinib sensitivity has been correlated with EMT status, we used a cellular model of inducible transition and observed that erlotinib prevented EMT in a more efficient way than gefitinib by acting on E-cadherin expression as well as on IPP levels. A retrospective analysis of the MERIT trial indicated that, besides a high level of E-cadherin, a low level of ILK could be linked to clinical benefit with erlotinib. In conclusion, we propose that, in an EGFR wild-type context, erlotinib may have a complementary mode of action by inhibiting IPP complex activities, resulting in the slowing down of the metastatic process of epithelial tumors. Mol Cancer Ther; 12(4); 520–9. ©2013 AACR.