Published in

2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

DOI: 10.1109/iembs.2009.5333392

Links

Tools

Export citation

Search in Google Scholar

The Effects of Hypercapnia on DTI Quantification in Anesthetized Rat Brain

Journal article published in 2009 by Abby Y. Ding, Edward S. Hui ORCID, Ed X. Wu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Diffusion Tensor Imaging (DTI) offers a valuable in vivo tool to characterize water diffusion behavior in biological tissues, particularly brain tissues. The accuracy of DTI derived parameters can directly affect the interpretation of underlying microstructures, physiology or pathologies. It is anticipated that measurement of apparent diffusion coefficient (ADC) using DTI could be influenced and complicated by the presence of water molecules in brain vasculature. However, little is known about to what degree does blood signal from vasculature affect the diffusion quantitation. In this study, we examined the effects of hypercapnia on DTI quantification in rat brains using inhalation of 5% carbon dioxide (CO2). It was found that statistically significant changes occurred in parametric DTI maps in response to cerebrovascular challenges, indicating that vascular factors could interfere with in vivo DTI characterization of neural tissues. Consequently, hemodynamic alterations can potentially affect the DTI quantitation and detection of tissue microstructures and pathological alterations. Therefore, cautions must be taken when interpreting DTI parameters in vivo.