Springer Verlag, Medical and Biological Engineering and Computing, 3(47), p. 291-300
DOI: 10.1007/s11517-008-0405-0
Full text: Download
Afterdepolarisations are associated with arrhythmias in the heart, but are difficult to study experimentally. In this study we used a simplified computational model of 1D and 2D cardiac ventricular tissue, where we could control the size of the region generating afterdepolarisations, as well as the properties of the afterdepolarisation waveform. Provided the size of the afterdepolarisation region was greater than around 1 mm, propagating extrasystoles were produced in both 1D and 2D. The number of extrasystoles produced depended on the amplitude, period, and duration of the oscillatory EAD waveform. In 2D, re-entry was also initiated for specific combinations of EAD amplitude, period, and duration, with the afterdepolarisation region acting as a common pathway. The main finding from this modelling study is therefore that afterdepolarisations can act as potent sources of propagating extrasystoles, as well as a source of re-entrant activation.