Published in

American Society for Microbiology, Infection and Immunity, 9(67), p. 4780-4786, 1999

DOI: 10.1128/iai.67.9.4780-4786.1999

Links

Tools

Export citation

Search in Google Scholar

Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Novel tuberculosis DNA vaccines encoding native ESAT-6, MPT-64, KatG, or HBHA mycobacterial proteins or the same proteins fused to tissue plasminogen activator (TPA) signal sequences were evaluated for their capacity to elicit humoral, cell-mediated, and protective immune responses in vaccinated mice. While all eight plasmids induced specific humoral responses, the constructs expressing the TPA fusions generally evoked higher antibody responses in vaccinated hosts. Although most of the DNA vaccines tested induced a substantial gamma interferon response in the spleen, the antigen-specific lung responses were 2- to 10-fold lower than the splenic responses at the time of challenge. DNA vaccines encoding the ESAT-6, MPT-64, and KatG antigens fused to TPA signal sequences evoked significant protective responses in mice aerogenically challenged with low doses of Mycobacterium tuberculosis Erdman 17 to 21 days after the final immunization. However, the protective response induced by live Mycobacterium bovis BCG vaccine was greater than the response induced by any of the DNA vaccines tested. These results suggest that the tuberculosis DNA vaccines were able to elicit substantial immune responses in suitably vaccinated mice, but further refinements to the constructs or the use of alternative immunization strategies will be needed to improve the efficacy of these vaccine candidates.