Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Food Chemistry, (182), p. 257-267

DOI: 10.1016/j.foodchem.2015.02.128

Links

Tools

Export citation

Search in Google Scholar

Combined effects of reduced malaxation oxygen levels and storage time on extra-virgin olive oil volatiles investigated by a novel chemometric approach

Journal article published in 2015 by Antonio Raffo ORCID, Remo Bucci, Antonio D’Aloise, Gianni Pastore
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Combined effects of oxygen level reduction in the malaxation headspace and storage time up to 6 months on the volatile composition of a monovarietal extra-virgin olive oil (EVOO), obtained from cv. Carboncella olives, were investigated by applying a full factorial design approach (4 oxygen levels × 4 storage times) on EVOOs extracted on an industrial scale in two mills, equipped with "two-phase" and "three-phase" centrifugation systems, respectively. The outcoming data were analysed by the chemometric technique called ANOVA-simultaneous component analysis (ASCA). Both reduction of oxygen malaxation levels and storage time significantly affected the volatile profile of the extracted EVOOs. Reduction of oxygen malaxation levels hindered the formation of lipoxygenase derived volatiles (hexanal, 1-hexanol, (Z)-2-hexenal, (E)-2-hexen-1-ol, (Z)-2-penten-1-ol, 2,4-hexadienals), whereas prolonged storage times were associated with increased levels of autoxidation products (octane, hexanal, C10 hydrocarbons) and other compounds that could originate from exogenous microbial activity (1-octen-3-ol, 6-methyl-5-hepten-2-one, benzaldehyde, methyl salicylate).