Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Food and Chemical Toxicology, 3-4(50), p. 797-807, 2012

DOI: 10.1016/j.fct.2011.12.026

Links

Tools

Export citation

Search in Google Scholar

Lonicera japonica THUNB. protects 6-hydroxydopamine-induced neurotoxicity by inhibiting activation of MAPKs, PI3K/Akt, and NF-κB in SH-SY5Y cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, we investigated the neuroprotective effects of Lonicera japonica THUNB. extract (LJ) on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells. We found that LJ significantly increased cell viability decrease, lactate dehydrogenase release (LDH), morphological changes, nuclear condensation, fragmentation, and reactive oxygen species (ROS) production induced by 6-OHDA in SH-SY5Y cells. The cytoprotection afforded by pretreatment with LJ was associated with increases of the glutathione (GSH) level, superoxide dismutase (SOD) activity, and catalase (CAT) activity in 6-OHDA-induced SH-SY5Y cells. In addition, LJ strikingly inhibited 6-OHDA-induced mitochondrial dysfunctions including reduction of mitochondria membrane potential (MMP) and activation of cleaved poly-ADP-ribose polymerase (PARP), cleaved caspase-3, cleaved caspase-9, increased Bax, as well as decreased Bcl-2 and Bcl-xL. Additionally, LJ dramatically attenuated 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), and phosphoinositide 3-kinase (PI3K)/Akt. Meanwhile, LJ counteracted nuclear factor-κB (NF-κB) activation by blocking its translocation to the nucleus. These findings suggest that LJ has a potent anti-parkinsonism; this effect was mediated, at least in part, by inhibition of neurotoxicity, apoptotic cascade events, and oxidative stress via activation of MAPKs, PI3K/Akt, and NF-κB.