Published in

Springer Verlag, Journal of Digital Imaging, 4(13), p. 191-199

DOI: 10.1007/bf03168394

Links

Tools

Export citation

Search in Google Scholar

Breast imaging using an amorphous silicon-based full-field digital mammographic system: Stability of a clinical prototype

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An amorphous silicon-based full-breast imager for digital mammography was evaluated for detector stability over a period of 1 year. This imager uses a structured CsI:TI scintillator coupled to an amorphous silicon layer with a 100-micron pixel pitch and read out by special purpose electronics. The stability of the system was characterized using the following quantifiable metrics: conversion factor (mean number of electrons generated per incident x-ray), presampling modulation transfer function (MTF), detector linearity and sensitivity, detector signal-to-noise ratio (SNR), and American College of Radiology (ACR) accreditation phantom scores. Qualitative metrics such as flat field uniformity, geometric distortion, and Society of Motion Picture and Television Engineers (SMPTE) test pattern image quality were also used to study the stability of the system. Observations made over this 1-year period indicated that the maximum variation from the average of the measurements were less than 0.5% for conversion factor, 3% for presampling MTF over all spatial frequencies, 5% for signal response, linearity and sensitivity, 12% for SNR over seven locations for all 3 target-filter combinations, and 0% for ACR accreditation phantom scores. ACR mammographic accreditation phantom images indicated the ability to resolve 5 fibers, 4 speck groups, and 5 masses at a mean glandular dose of 1.23 mGy. The SMPTE pattern image quality test for the display monitors used for image viewing indicated ability to discern all contrast steps and ability to distinguish line-pair images at the center and corners of the image. No bleeding effects were observed in the image. Flat field uniformity for all 3 target-filter combinations displayed no artifacts such as gridlines, bad detector rows or columns, horizontal or vertical streaks, or bad pixels. Wire mesh screen images indicated uniform resolution and no geometric distortion.