Published in

American Institute of Physics, Review of Scientific Instruments, 10(75), p. 3208-3215

DOI: 10.1063/1.1790557

Links

Tools

Export citation

Search in Google Scholar

Applications of a single-longitudinal-mode alexandrite laser for diagnostics of parameters of combustion interest

Journal article published in 2004 by Zs S. Li ORCID, Mikael Afzelius, Johan Zetterberg, Marcus Aldén
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report on the applications of a single-longitudinal-mode (SLM) pulsed alexandrite laser system for diagnostics of parameters of flow/combustion interest. The laser system is characterized by its narrow linewidth, high peak power, and broad tunablity. The absolute frequency of the laser output was monitored by a wavelength diagnostic system, which included a high-resolution confocal etalon and a molecular iodine laser-induced fluorescence (LIF) detection system. Different nonlinear frequency conversion schemes were used to cover a large frequency range from the infrared to the deep UV. The versatility of the laser system for flow/combustion diagnostics is demonstrated in three applications, namely filtered Rayleigh scattering, high-resolution Doppler-free two-photon LIF of CO, and infrared LIF and polarization spectroscopy of CO2. The potential impacts of using this SLM laser system in laser flow/combustion diagnostic applications are discussed.