Published in

Elsevier, Global and Planetary Change, (106), p. 64-76

DOI: 10.1016/j.gloplacha.2013.03.007

Links

Tools

Export citation

Search in Google Scholar

Low- to high-productivity pattern within Heinrich Stadial 1: Inferences from dinoflagellate cyst records off Senegal

Journal article published in 2013 by Ilham Bouimetarhan, Jeroen Groeneveld, Lydie Dupont ORCID, Karin Zonneveld
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In order to investigate a possible connection between tropical northeast (NE) Atlantic primary productivity, Atlantic meridional overturning circulation (AMOC), and drought in the Sahel region during Heinrich Stadial 1 (HS1), we used dinoflagellate cyst (dinocyst) assemblages, Mg/Ca based reconstructed temperatures, stable carbon isotopes (δ13C) and geochemical parameters of a marine sediment core (GeoB 9508-5) from the continental slope offshore Senegal. Our results show a two-phase productivity pattern within HS1 that progressed from an interval of low marine productivity between ~ 19 and 16 kyr BP to a phase with an abrupt and large productivity increase from ~ 16 to 15 kyr BP. The second phase is characterized by distinct heavy planktonic δ13C values and high concentrations of heterotrophic dinocysts in addition to a significant cooling signal based on the reconstructions of past sea surface temperatures (SSTs). We conclude that productivity variations within HS1 can be attributed to a substantial shift of West African atmospheric processes. Taken together our results indicate a significant intensification of the North East (NE) trade winds over West Africa leading to more intense upwelling during the last millennium of HS1 between ~ 16 and 15 kyr BP, thus leaving a strong imprint on the dinocyst assemblages and sea surface conditions. Therefore, the two-phase productivity pattern indicates a complex hydrographic setting suggesting that HS1 cannot be regarded as uniform as previously thought.