Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Experimental Parasitology, 3(134), p. 281-289

DOI: 10.1016/j.exppara.2013.03.026

Links

Tools

Export citation

Search in Google Scholar

An approach for interlaboratory comparison of conventional and real-time PCR assays for diagnosis of human leishmaniasis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protozoa of the Leishmania genus are transmitted to humans by the bite of infected sandflies, and are the causative agents of leishmaniasis which ranges from cutaneous to visceral clinical forms. The definitive diagnosis of leishmaniasis has relied traditionally on parasite demonstration, either by microscopy or culture; in the last years, diagnosis based on PCR methods has overcome some drawbacks of traditional methods, increasing sensitivity and allowing using less invasive sampling for diagnosis. However, there are not defined protocols and almost each laboratory applies its own in-house method. Although there are several studies comparing the performance of different methods within the same laboratory, those addressing interlaboratory comparison are scarce, in spite of the growing number of collaborative projects between partners from different leishmaniasis endemic and non-endemic countries. In this work we propose a protocol for interlaboratory comparison of conventional and real-time PCR methods involving four participant laboratories from four different endemic regions in four continents; the protocol includes a quality control step and reduces the variability among the samples tested by each participant. A panel of 77 samples from human origin and 9 from different parasite strains was blindly tested by the participants, aiming to assess the sensitivity of the different methods as well as their usefulness for species identification. Real-time PCR methods targeting the kDNA minicircles returned the highest sensitivity, while both PCR targeting ITS-1 and further HaeIII digestion and a combined algorithm including hsp70 PCR and restriction fragment length polymorphism analysis were the most appropriate approaches for species identification.