Published in

Elsevier, Earth and Planetary Science Letters, 1-2(301), p. 199-212

DOI: 10.1016/j.epsl.2010.10.041

Links

Tools

Export citation

Search in Google Scholar

Lattice-preferred orientation and microstructure of peridotites from ODP Hole 1274A (15°39′N), Mid-Atlantic Ridge: Testing models of mantle upwelling and tectonic exhumation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Eleven harzburgites and one dunite from Ocean Drilling Program Leg 209 Hole 1274A preserve high-temperature mantle textures. Electron backscatter diffraction (EBSD) analysis shows moderately developed crystal lattice preferred orientations (LPOs) in olivine and orthopyroxene (M-indices≈0.1) indicative of crystal-plastic deformation at ~1250°C. These rocks preserve a protogranular texture with a weak olivine foliation, a very weak or absent orthopyroxene foliation that may be decoupled from the orthopyroxene LPO, and minor interstitial clinopyroxene and spinel. Olivine grain size distributions, along with melt-related microstructures in orthopyroxene, clinopyroxene and spinel suggest that high-temperature deformation textures have been overprinted by pervasive post-deformation melt-rock interaction. Paleomagnetic data constrain the olivine [100] axes to be subhorizontal and oriented at low angle (≤28.6°±10.6°) to the ridge axis at the onset of serpentinization. This orientation is consistent with either complex 3-D mantle upwelling or 2-D mantle upwelling coupled with complex 3-D tectonic emplacement to the seafloor.