Published in

American Chemical Society, Langmuir, 13(29), p. 4193-4203, 2013

DOI: 10.1021/la304658e

Links

Tools

Export citation

Search in Google Scholar

Effect of Counterions on the Shape, Hydration, and Degree of Order at the Interface of Cationic Micelles: The Triflate Case

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Specific ion effects in surfactant solutions affect the properties of micelles. Dodecyltrimethylammonium chloride (DTAC), bromide (DTAB) and methanesulfonate (DTAMS) micelles are typically spherical, but some organic anions can induce shape or phase transitions in DTA+ micelles. Above a defined concentration, sodium triflate (NaTf) induces a phase separation in dodecyltrimethylammonium triflate (DTATf) micelles, a phenomenon rarely observed in cationic micelles. This unexpected behavior of the DTATf/NaTf system suggests that DTATf aggregates have unusual properties. The structural properties of DTATf micelles were analyzed by time-resolved fluorescence quenching, small angle X-ray scattering, nuclear magnetic resonance and electron paramagnetic resonance and compared with those of DTAC, DTAB and DTAMS micelles. Compared to the other micelle types, the DTATf micelles had a higher average number of monomers per aggregate, an uncommon disk-like shape, smaller interfacial hydration and restricted monomer chain mobility. Molecular dynamic simulations supported these observations. Even small water soluble salts can profoundly affect micellar properties; our data demonstrate that the -CF3 group in Tf- was directly responsible for the observed shape changes by decreasing interfacial hydration and increasing the degree of order of the surfactant chains in the DTATf micelles.