Published in

Taylor and Francis Group, International Journal of Remote Sensing, 4(31), p. 831-849

DOI: 10.1080/01431160902897866

Links

Tools

Export citation

Search in Google Scholar

Estimation of solar UV radiation in maritime Antarctica using a nonlinear model including cloud effects

Journal article published in 2010 by K. Laska ORCID, P. Prosek, L. Budik, M. Budikova, G. Milinevsky
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new approach to the estimation of erythemally effective ultraviolet (EUV) radiation for all sky conditions that occur in maritime Antarctica is reported. The spatial variability of the total ozone content (TOC) and attenuation of the EUV radiation in the atmosphere are taken into consideration. The proposed nonlinear regression model of EUV radiation is described by a hyperbolic transmission function. The first results and the model validation for Vernadsky Station (formerly the British Faraday Station) during the period 2002–2005 show very good agreement with the measured values (R = 99.2). The developed model was evaluated using daily doses of EUV radiation with respect to solar elevation angle and cloudiness. The mean average prediction error (MAPE) for cloudy (4.1–7.0 oktas) and overcast skies (7.1–8.0 oktas) varied between 4.0% and 4.3%, while for partly cloudy days (0–4.0 oktas) with high variability of cloud types during a day, MAPE reached 5.9%.