Published in

American Chemical Society, Journal of the American Chemical Society, 39(134), p. 16345-16351, 2012

DOI: 10.1021/ja306865z

Links

Tools

Export citation

Search in Google Scholar

Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Small molecules, namely, DCAO(3)TBDT and DR(3)TBDT, with 2-ethylhexoxy substituted BDT as the central building block and octyl cyanoacetate and 3-ethylrhodanine as different terminal units with the same linkage of dioctyltertthiophene, have been designed and synthesized. The photovoltaic properties of these two molecules as donors and fullerene derivatives as the acceptors in bulk heterojunction solar cells are studied. Among them, DR(3)TBDT shows excellent photovoltaic performance, and power conversion efficiency as high as 7.38% (certified 7.10%) under AM 1.5G irradiation (100 mW cm(-2)) has been achieved using the simple solution spin-coating fabrication process, which is the highest efficiency reported to date for any small-molecule-based solar cells. The results demonstrate that structure fine turning could cause significant performance difference and with that the performance of solution-processed small-molecule solar cells can indeed be comparable with or even surpass their polymer counterparts.