Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 10(109), p. 104905, 2011

DOI: 10.1063/1.3580262

Links

Tools

Export citation

Search in Google Scholar

Flash radiography with 24 GeV/c protons

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The accuracy of density measurements and position resolution in flash (40 ns) radiography of thick objects with 24 Gev/c protons is investigated. A global model fit to step wedge data is shown to give a good description spanning the periodic table. The parameters obtained from the step wedge data are used to predict transmission through the French Test Object (FTO), a test object of nested spheres, to a precision better than 1%. Multiple trials have been used to show that the systematic errors are less than 2%. Absolute agreement between the average radiographic measurements of the density and the known density is 1%. Spatial resolution has been measured to be 200 {mu}m at the center of the FTO. These data verify expectations of the benefits provided by high energy hadron radiography for thick objects.