American Institute of Physics, Journal of Applied Physics, 10(109), p. 104905, 2011
DOI: 10.1063/1.3580262
Full text: Unavailable
The accuracy of density measurements and position resolution in flash (40 ns) radiography of thick objects with 24 Gev/c protons is investigated. A global model fit to step wedge data is shown to give a good description spanning the periodic table. The parameters obtained from the step wedge data are used to predict transmission through the French Test Object (FTO), a test object of nested spheres, to a precision better than 1%. Multiple trials have been used to show that the systematic errors are less than 2%. Absolute agreement between the average radiographic measurements of the density and the known density is 1%. Spatial resolution has been measured to be 200 {mu}m at the center of the FTO. These data verify expectations of the benefits provided by high energy hadron radiography for thick objects.