Elsevier, Ecological Modelling, (225), p. 146-158
DOI: 10.1016/j.ecolmodel.2011.10.028
Full text: Download
We developed and evaluated the performance of a metapopulation model enabling managers to examine, for the first time, the consequences of alternative management strategies involving habitat conditions and hunting on both harvest opportunity and carrying capacity (i.e., equilibrium population size in the absence of harvest) for migratory waterfowl at a continental scale. Our focus is on the northern pintail (Anas acuta; hereafter, pintail), which serves as a useful model species to examine the potential for inte-grating waterfowl harvest and habitat management in North America. We developed submodel structure capturing important processes for pintail populations during breeding, fall migration, winter, and spring migration while encompassing spatial structure representing three core breeding areas and two core nonbreeding areas. A number of continental-scale predictions from our baseline parameterization (e.g., carrying capacity of 5.5 million, equilibrium population size of 2.9 million and harvest rate of 12% at max-imum sustained yield [MSY]) were within 10% of those from the pintail harvest strategy under current use by the U.S. Fish and Wildlife Service. To begin investigating the interaction of harvest and habitat management, we examined equilibrium population conditions for pintail at the continental scale across a range of harvest rates while perturbing model parameters to represent: (1) a 10% increase in breed-ing habitat quality in the Prairie Pothole population (PR); and (2) a 10% increase in nonbreeding habitat quantity along in the Gulf Coast (GC). Based on our model and analysis, a greater increase in carrying capacity and sustainable harvest was seen when increasing a proxy for habitat quality in the Prairie Pot-hole population. This finding and underlying assumptions must be critically evaluated, however, before specific management recommendations can be made. To make such recommendations, we require (1) extended, refined submodels with additional parameters linking influences of habitat management and environmental conditions to key life-history parameters; (2) a formal sensitivity analysis of the revised model; (3) an integrated population model that incorporates empirical data for estimating key vital rates; and (4) cost estimates for changing these additional parameters through habitat management efforts. We foresee great utility in using an integrated modeling approach to predict habitat and harvest management influences on continental-scale population responses while explicitly considering putative effects of cli-mate change. Such a model could be readily adapted for management of many habitat-limited species. Published by Elsevier B.V. (B.J. Mattsson).