Published in

American Chemical Society, Journal of the American Chemical Society, 36(134), p. 15016-15021, 2012

DOI: 10.1021/ja3055639

Links

Tools

Export citation

Search in Google Scholar

Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have synthesized, characterized, and computationally simulated/validated the behavior of two new metal-organic framework (MOF) materials displaying the highest experimental Brunauer-Emmett-Teller (BET) surface areas of any porous materials reported to date (∼7000 m(2)/g). Key to evacuating the initially solvent-filled materials without pore collapse, and thereby accessing the ultrahigh areas, is the use of a supercritical CO(2) activation technique. Additionally, we demonstrate computationally that by shifting from phenyl groups to "space efficient" acetylene moieties as linker expansion units, the hypothetical maximum surface area for a MOF material is substantially greater than previously envisioned (∼14600 m(2)/g (or greater) versus ∼10500 m(2)/g).