Published in

Elsevier, Forest Ecology and Management, 1-3(213), p. 151-159

DOI: 10.1016/j.foreco.2005.03.017

Links

Tools

Export citation

Search in Google Scholar

Paludification in black spruce (Picea mariana) forests of eastern Canada: Potential factors and management implications

Journal article published in 2005 by Nicole Fenton ORCID, Nicolas Lecomte, Sonia Légaré, Yves Bergeron
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Over time boreal black spruce forests on fine-textured soils in western Quebec, Canada develop very thick forest floors composed of poorly decomposed litter created by the tree and understory layers. These paludified soils are typically waterlogged and cold, and in this fire-mediated landscape, are at least partially consumed by stand replacing fires, which facilitates the establishment of the next generation of trees. Within a context of ecosystem-based management, forest harvest should mimic the dual effects of high severity fire on tree and forest floor biomass. This study was designed to investigate potential factors of forest floor thickness in order to determine the impact of removing only a tree layer, and to suggest strategies to limit paludification in this important forestry region. Forest floor thickness, fire severity, basal area, canopy closure, cover of Sphagnum spp. and ericaceous spp. were measured in black spruce stands across a chronosequence from 50 to 350 years after fire. Fire severity was determined to be a key factor in determining forest floor thickness by path analysis. After high severity fires forest floor thickness was primarily dependant on stand age, but was also positively influenced by Sphagnum spp. cover and negatively influenced by the presence of trembling aspen (Populustremuloides). These results suggest that forest interventions that do no remove the organic layer may be mimicking low severity fires and promoting poor tree growth and regeneration. Forest floor thickness may be limited by avoiding interventions that open the canopy and may promote the presence of Sphagnum spp. and ericaceous spp., and or by practicing mixed silviculture of trembling aspen and black spruce. However, a balance needs to be maintained between the application of these techniques and the preservation of paludified forests in the landscape.