Published in

Elsevier, Electrochemistry Communications, (52), p. 1-4, 2015

DOI: 10.1016/j.elecom.2015.01.005

Links

Tools

Export citation

Search in Google Scholar

In situ characterisation of PEM water electrolysers using a novel reference electrode

Journal article published in 2015 by Edward Brightman ORCID, James Dodwell ORCID, Nick van Dijk, Gareth Hinds
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Polymer electrolyte membrane water electrolysers (PEMWEs) are a promising technology for hydrogen production but catalyst degradation mechanisms are poorly understood, hampering informed catalyst design for extended lifetimes and the use of more economical loadings. Here we demonstrate the application of an innovative reference electrode to the study of catalyst degradation in an operating PEMWE. This approach enables separation of the relative contribution of anode and cathode to the overall water splitting reaction. It is shown that, in shut-down periods during power cycling, the cathode contributes more to changes in open circuit voltage than the anode. Changes in the electrochemical surface area of the platinum cathode as a result of power cycling are measured in situ for the first time using hydrogen underpotential cyclic voltammetry. The results demonstrate that degradation of the platinum cathode plays a more significant role than conventionally assumed by the electrolyser community, which has tended to focus more on the iridium/ruthenium oxide anode because it dominates the performance of the cell.