Elsevier, Thin-Walled Structures, 11(40), p. 925-953
DOI: 10.1016/s0263-8231(02)00042-3
Full text: Unavailable
A computational model for analysis of local buckling and postbuckling of stiffened panels is derived. The model provides a tool that is more accurate than existing design codes, and more efficient than nonlinear finite element methods. Any combination of biaxial in-plane compression or tension, shear, and lateral pressure may be analysed. Deflections are assumed in the form of trigonometric function series. The deformations are coupled such that continuity of rotation between the plate and the stiffener web is ensured, as well as longitudinal continuity of displacement. The response history is traced using energy principles and perturbation theory. The procedure is semi-analytical in the sense that all energy formulations are derived analytically, while a numerical method is used for solving the resulting set of equations, and for incrementation of the solution. The stress in certain critical points are checked using the von Mises yield criterion, and the onset of yielding is taken as an estimate of ultimate strength for design purposes.