Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Thin-Walled Structures, 11(40), p. 925-953

DOI: 10.1016/s0263-8231(02)00042-3

Links

Tools

Export citation

Search in Google Scholar

A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling

Journal article published in 2002 by Eirik Byklum, Jørgen Amdahl ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A computational model for analysis of local buckling and postbuckling of stiffened panels is derived. The model provides a tool that is more accurate than existing design codes, and more efficient than nonlinear finite element methods. Any combination of biaxial in-plane compression or tension, shear, and lateral pressure may be analysed. Deflections are assumed in the form of trigonometric function series. The deformations are coupled such that continuity of rotation between the plate and the stiffener web is ensured, as well as longitudinal continuity of displacement. The response history is traced using energy principles and perturbation theory. The procedure is semi-analytical in the sense that all energy formulations are derived analytically, while a numerical method is used for solving the resulting set of equations, and for incrementation of the solution. The stress in certain critical points are checked using the von Mises yield criterion, and the onset of yielding is taken as an estimate of ultimate strength for design purposes.