Published in

Springer, Space Science Reviews, 1-4(164), p. 133-181, 2011

DOI: 10.1007/s11214-011-9858-9

Links

Tools

Export citation

Search in Google Scholar

Non-adiabatic Ion Acceleration in the Earth Magnetotail and Its Various Manifestations in the Plasma Sheet Boundary Layer

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many physical phenomena in space involve energy dissipation which generally leads to charged particle acceleration, often up to very high energies. In the Earth magnetosphere energy accumulation and release occur in the magnetotail, namely in its Current Sheet (CS). The kinetic analysis of non-adiabatic ion trajectories in the CS region with finite but positive normal component of the magnetic field demonstrated that this region is essentially non-uniform in terms of scattering characteristics of ion orbits and contains spatially localized, well-separated sites of enhanced and reduced chaotization. The latter represent sources from which accelerated and energy-collimated ions are ejected into Plasma Sheet Boundary Layer (PSBL) and stream towards the Earth. Numerical simulations performed as part of a Large-Scale Kinetic Model have shown the multiplet ion structure of the PSBL is formed by a set of ion beams (beamlets) localized both in physical and velocity space. This structure of the PSBL is quite different from the one produced by CS acceleration near a magnetic reconnection region in which more energetic ion beams are generated with a broad range of parallel velocities. Multi-point Cluster observations in the magnetotail PSBL not only showed that non-adiabatic ion acceleration occurs on closed magnetic field lines with at least two CS sources operating simultaneously, but also allowed an estimation of their spatial and temporal characteristics. In this paper we discuss and compare the PSBL manifestations of both mechanisms of CS particle acceleration: one based on the peculiar properties of non-adiabatic ion trajectories which operates on closed magnetic field lines and the other representing the well-explored mechanism of particle acceleration during the course of magnetic reconnection. We show that these two mechanisms supplement each other and the first operates mostly during quiescent magnetotail periods.