Published in

Elsevier, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 11(58), p. 2389-2396

DOI: 10.1016/s1386-1425(02)00053-7

Links

Tools

Export citation

Search in Google Scholar

Determination of the 2H/1H, 17O/16O, and 18O/16O isotope ratios in water by means of tunable diode laser spectroscopy at 1.39 μm

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We demonstrate the feasibility of the accurate and simultaneous measurement of the 2H/1H, 17O/16O, and 18O/16O isotope ratios in water vapor by means of tunable diode laser spectroscopy. The absorptions are due to the v1 + v3 combination band, observed using a room temperature, distributed feedback (DFB) diode laser at 1.39 microm. The precision of the instrument is approximately 3, 1, and 0.5/1000 for the 2H, 17O, and 18O isotope ratios, respectively, and is at present limited by residual optical feedback to the laser. The signal-to-noise, however, is superior to that obtained in a similar experiment using a color center laser at 2.7 microm. Replacing the current laser with a better unit, we are confident that a precision well below 1/1000 is attainable for all three isotope ratios. The diode laser apparatus is ideally suited for applications demanding a reliable, cheap, and/or portable instrument, such as the biomedical doubly labeled water method and atmospheric sensing.