Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Rapid Communications in Mass Spectrometry, 3(22), p. 330-336, 2008

DOI: 10.1002/rcm.3372

Links

Tools

Export citation

Search in Google Scholar

Mass spectrometry and hydrogen/deuterium exchange measurements of alcohol-induced structural changes in cellular retinol-binding protein type I

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To bind and release its ligand, cellular retinol-binding protein type I (CRBP) needs to undergo conformational and dynamic changes to connect the inner, solvent-shielded cavity, where retinol is found to bind, and the outside medium. Retinol dissociation in vitro is favoured by water/alcohol mixtures whose moderately low dielectric constants mimic a property characteristic of the membrane microenvironment where this process occurs in vivo. Apo- and holo-CRBP, in either water/methanol or water/trifluoroethanol (TFE) mixtures, were analyzed at equilibrium by electrospray ionization with orthogonal quadrupole time-of-flight mass spectrometry (ESI-Q-TOFMS) to identify the alcohol-induced species. The questions were asked whether the presence of alcohols affects protein dynamics, as reflected by hydrogen/deuterium (H/D) exchange monitored by continuous-labelling experiments, and to which extent retinol dissociation influences the process. With increasing methanol, at pH near neutrality, apo-CRBP exhibits a progressively more compact conformation, resulting in reduced H/D exchange with respect to the native protein in water. Retinol dissociation from the holo-protein did not promote hydrogen replacement. Similarly, in the presence of the low TFE concentration sufficient to cause retinol dissociation, the hydrogen exchange of the resulting apo-protein was not exalted. However, in contrast with the alkanol, higher TFE concentrations induced a transition of apo-CRBP to a new alpha-helix conformation capable of exchanging all available hydrogen atoms.