Published in

Elsevier, International Journal of Hydrogen Energy, 2(35), p. 500-510

DOI: 10.1016/j.ijhydene.2009.11.030

Links

Tools

Export citation

Search in Google Scholar

Maximizing the solar to H2 energy conversion efficiency of outdoor photobioreactors using mixed cultures

Journal article published in 2010 by Halil Berberoğlu, Laurent Pilon ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A numerical study is presented aiming to maximize the solar to hydrogen energy conversion efficiency of a mixed culture containing microorganisms with different radiation characteristics. The green algae Chlamydomonas reinhardtii CC125 and the purple non-sulfur bacteria Rhodobacter sphearoides ATCC 49419 are chosen for illustration purposes. The previously measured radiation characteristics of each microorganism are used as input parameters in the radiative transport equation for calculating the local spectral incident radiation within a flat panel photobioreactor. The specific hydrogen production rate for each microorganism as a function of the available incident radiation is recovered from data reported in the literature.The results show that for mono-cultures, the solar to H2 energy conversion efficiency, for all combinations of microorganism concentrations and photobioreactor thicknesses, fall on a single line with respect to the optical thickness of the system. The maximum solar energy conversion efficiency of mono-cultures of C. reinhardtii and R. spaheroides are 0.061 and 0.054%, respectively, corresponding to optical thicknesses of 200 and 16, respectively. Using mixed cultures, a total conversion efficiency of about 0.075% can be achieved corresponding to an increase of about 23% with respect to that of a mono-culture of C. reinhardtii. It has been shown that the choice of microorganism concentrations for maximum solar energy conversion efficiency in mixed cultures is non-trivial and requires careful radiation transfer analysis coupled with H2 production kinetics taking into account the photobioreactor thickness.