Published in

American Institute of Physics, Journal of Applied Physics, 2(119), p. 025901

DOI: 10.1063/1.4940020

Links

Tools

Export citation

Search in Google Scholar

Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The structure stability under high pressure and thermal expansion behavior of Na3OBr and Na4OI2, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na3OBr and Na4OI2, respectively. The cubic Na3OBr structure and tetragonal Na4OI2 with intergrowth K2NiF4structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure,Na4OI2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressurestructure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.