Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 10(112), p. 2771-2774, 2008

DOI: 10.1021/jp8003322

Links

Tools

Export citation

Search in Google Scholar

Selective Enrichment of (6,5) and (8,3) Single-Walled Carbon Nanotubes via Cosurfactant Extraction from Narrow (n,m) Distribution Samples

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Highly selective enrichment of (6,5) and (8,3) SWCNTs (above 85% of the semiconducting tubes) was achieved through multistep extraction by sodium dodecyl sulfate (SDS) and sodium cholate (SC) cosurfactant solution from narrowly (n,m) distributed SWCNTs produced by the catalyst Co-MCM-41. A systematic change in the chirality selectivity was observed when the weight ratio between SDS and SC varied in cosurfactant solutions, with maximum enrichment selectivity for (6,5) tubes yielded at 1:4. Furthermore, surfactants were washed away easily to produce "clean" SWCNTs. This observation sheds light on the possibility of obtaining SWCNTs with the desired (n,m) structure via an easily scalable approach. No selectivity was detected when using sodium dodecyl benzene sulfonate (SDBS)/SC cosurfactants, hence suggesting the need for further exploration of various cosurfactant combinations for more effective extraction of different (n,m) species.