Published in

Elsevier, BBA - Bioenergetics, 8(1817), p. 1220-1228, 2012

DOI: 10.1016/j.bbabio.2012.01.012

Links

Tools

Export citation

Search in Google Scholar

Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes — Periodicity and structural flexibility of the stroma lamellae

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The multilamellar organization of freshly isolated spinach and pea chloroplast thylakoid membranes was studied using small-angle neutron scattering. A broad peak at ~0.02Å(-1) is ascribed to diffraction from domains of ordered, unappressed stroma lamellae, revealing a repeat distance of 294ű7Å in spinach and 345ű11Å in pea. The peak position and hence the repeat distance of stroma lamellae is strongly dependent on the osmolarity and the ionic strength of the suspension medium, as demonstrated by varying the sorbitol and the Mg(++)-concentration in the sample. For pea thylakoid membranes, we show that the repeat distance decreases when illuminating the sample with white light, in accordance with our earlier results on spinach, also regarding the observation that addition of an uncoupler prohibits the light-induced structural changes, a strong indication that these changes are driven by the transmembrane proton gradient. We show that the magnitude of the shrinkage is strongly dependent on light intensity and that the repeat distance characteristic of the dark state after illumination is different from the initial dark state. Prolonged strong illumination leads to irreversible changes and swelling as reflected in increased repeat distances. The observed reorganizations are discussed within the frames of the current structural models of the granum-stroma thylakoid membrane assembly and the regulatory mechanisms in response to variations in the environmental conditions in vivo. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.