Dissemin is shutting down on January 1st, 2025

Published in

Springer, Fish Physiology and Biochemistry, 2(34), p. 139-149, 2007

DOI: 10.1007/s10695-007-9154-5

Links

Tools

Export citation

Search in Google Scholar

Urea cycle enzymes through the development of pacu (Piaractus mesopotamicus): The role of ornithine carbamoyl transferase

Journal article published in 2007 by Paulo Sérgio Monzani ORCID, Gilberto Moraes
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The present work reports the activities of urea cycle enzymes during the ontogenic development of the teleost pacu (Piaractus mesopotamicus). Urea cycle enzymes from the kidney and liver of adult fish were compared with those from the fish's embryonic phases. Samples were evaluated over all phases of embryonic development, the larval period and alevin. Ammonia and urea concentrations were determined during embryogenesis and in the plasma of adult fish. Except for carbamoyl phosphate synthetase-III (CPS-III), all enzymes of the urea cycle were expressed in the larvae and alevins as well as in the liver and kidney of adult fish. In spite of the low level of activity of the ornithine urea cycle (OUC) enzymes compared to those in mammals, and the low levels of tissue urea concentration compared to ammonia, the ureogenesis was evaluated in pacu. Ammonia seems to be the main nitrogenous waste during embryonic development. In this phase glutamine synthetase (GS) may play a role in ammonia detoxification, and the OUC enzymes can be individually involved in functions other than urea production. The presence of ornithine carbamoyl transferase (OCT) in all developmental phases of pacu and in the adult liver and kidney suggests that this enzyme is performing different metabolic pathways. OCT in the kidney, wherein the activity is less than in the liver, should work in the biosynthesis of polyamines and control the arginine plasma concentration given that renal arginase and argininosuccinate synthetase-argininosuccinate lyase are more active than from the liver. We suppose that OCT during the embryogenesis is a control step regulating the cellular concentration of ornithine for polyamines synthesis.