Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Computer Vision and Image Understanding, (134), p. 74-88

DOI: 10.1016/j.cviu.2014.12.001

Links

Tools

Export citation

Search in Google Scholar

Non-myopic information theoretic sensor management of a single pan–tilt–zoom camera for multiple object detection and tracking

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Detailed derivation of an information theoretic framework for real PTZ management.Introduction and implementation of a non-myopic strategy.Large experimental validation, with synthetic and realistic datasets.Working demonstration of myopic strategy on an off-the-shelf PTZ camera. Automatic multiple object tracking with a single pan-tilt-zoom (PTZ) cameras is a hard task, with few approaches in the literature, most of them proposing simplistic scenarios. In this paper, we present a novel PTZ camera management framework in which at each time step, the next camera pose (pan, tilt, focal length) is chosen to support multiple object tracking. The policy can be myopic or non-myopic, where the former analyzes exclusively the current frame for deciding the next camera pose, while the latter takes into account plausible future target displacements and camera poses, through a multiple look-ahead optimization. In both cases, occlusions, a variable number of subjects and genuine pedestrian detectors are taken into account, for the first time in the literature. Convincing comparative results on synthetic data, realistic simulations and real trials validate our proposal, showing that non-myopic strategies are particularly suited for a PTZ camera management.