Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S232(1), p. 368

DOI: 10.1017/s1743921306000949

Links

Tools

Export citation

Search in Google Scholar

Science cases for the OWL Earth-like planet imager and spectrograph (EPICS)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The extreme contrast in mass and luminosity between the extra-solar planets and their host stars make detailed studies of these planets very challenging. In particular, direct observations of extra-solar planets is still beyond the capabilities of the currently available instrumentation, save for perhaps a few extreme cases of very young and massive planets at large distances from the central star. While progress in instrumentation might allow significant progress in detection capabilities either with the 8 and 10-m ground-based telescopes (Planet Finder instruments on the VLT and Gemini) or with the next generation space telescope (JWST), imaging of extra-solar planets over a wide range of parameters, and possibly down to terrestrial planets, will require extremely large ground-based telescopes like OWL or dedicated space instrumentation (TPF or Darwin for instance). We outline here the scientific objectives of EPICS, the OWL Earth-like Planet Imager and Spectrograph, summarize the corresponding high level requirements, present the foreseen observing modes and give a first estimate of its performance.