Published in

American Chemical Society, Nano Letters, 8(13), p. 3594-3601, 2013

DOI: 10.1021/nl4013387

Links

Tools

Export citation

Search in Google Scholar

Observation of Low Energy Raman Modes in Twisted Bilayer Graphene

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two new Raman modes below 100 cm^-1 are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The 94 cm^-1 mode (measured with a 532 nm laser excitation) is assigned to the fundamental layer breathing vibration (ZO (prime) mode) mediated by the twisted bilayer graphene lattice, which lacks long-range translational symmetry. The dependence of this modes frequency and linewidth on the rotational angle can be explained by the double resonance Raman process which is different from the previously-identified Raman processes activated by twisted bilayer graphene superlattice. The dependence also reveals the strong impact of electronic-band overlaps of the two graphene layers. Another new mode at 52 cm^-1, not observed previously in the bilayer graphene system, is tentatively attributed to a torsion mode in which the bottom and top graphene layers rotate out-of-phase in the plane. ; Comment: 12 pages, 5 figures, 14 supp. figures (accepted by Nano Lett)