Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Clinical Science, 2(123), p. 111-119, 2012

DOI: 10.1042/cs20110680

Links

Tools

Export citation

Search in Google Scholar

Proteomic profiling of acute coronary thrombosis reveals a local decrease in pigment epithelium-derived factor in acute myocardial infarction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thrombotic occlusion of an epicardial coronary artery on the grounds of atherosclerotic plaque is considered the ultimate step in AMI (acute myocardial infarction). However, the precise pathophysiological mechanisms underlying acute coronary occlusion are not fully understood. We have analysed proteomic profiles of systemic plasma and plasma derived from the site of coronary plaque rupture of non-diabetic patients with STEMI (ST-segment elevation myocardial infarction). Label-free quantification of MS/MS (tandem MS) data revealed differential regulation of complement cascade components and a decrease in anti-thrombotic PEDF (pigment epithelium-derived factor) between CS (culprit site)-derived plasma and systemic plasma. PEDF, which is known to have a protective role in atherothrombosis, was relatively decreased at the CS, with a level of expression inverse to local MMP-9 (matrix metalloproteinase-9) activity. CS plasma displayed enhanced proteolytic activity towards PEDF. Proteomics of coronary thrombus aspirates indicate that PEDF processing is associated with coronary plaque rupture.