Dissemin is shutting down on January 1st, 2025

Published in

Sociedade Brasileira de Química, SBQ, Journal of the Brazilian Chemical Society, 9(22), p. 1718-1726, 2011

DOI: 10.1590/s0103-50532011000900014

Links

Tools

Export citation

Search in Google Scholar

Descriptor-and Fragment-based QSAR Models for a Series of Schistosoma mansoni Purine Nucleoside Inhibitors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the treatment of major parasitic infectious diseases, with special emphasis on its role in the discovery of new drugs against schistosomiasis, a tropical disease that affects millions of people worldwide. In the present work, we have determined the inhibitory potency and developed descriptor- and fragment-based quantitative structure-activity relationships (QSAR) for a series of 9-deazaguanine analogs as inhibitors of SmPNP. Significant statistical parameters (descriptor-based model: r2 = 0.79, q2 = 0.62, r2pred = 0.52; and fragment-based model: r2 = 0.95, q2 = 0.81, r 2pred = 0.80) were obtained, indicating the potential of the models for untested compounds. The fragment-based model was then used to predict the inhibitory potency of a test set of compounds, and the predicted values are in good agreement with the experimental results.