Published in

Oxford University Press, Endocrinology, 4(153), p. 1959-1971, 2012

DOI: 10.1210/en.2011-2032

Links

Tools

Export citation

Search in Google Scholar

Cellular Distribution, Regulated Expression, and Functional Role of the Anorexigenic Peptide, NUCB2/Nesfatin-1, in the Testis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Nesfatin-1, product of the precursor NEFA/nucleobindin2 (NUCB2), was initially identified as anorectic hypothalamic neuropeptide, acting in a leptin-independent manner. In addition to its central role in the control of energy homeostasis, evidence has mounted recently that nesfatin-1 is also produced in peripheral metabolic tissues, such as pancreas, adipose, and gut. Moreover, nesfatin-1 has been shown to participate in the control of body functions gated by whole-body energy homeostasis, including puberty onset. Yet, whether, as is the case for other metabolic neuropeptides, NUCB2/nesfatin-1 participates in the direct control of gonadal function remains unexplored. We document here for the first time the expression of NUCB2 mRNA in rat, mouse, and human testes, where NUCB2/nesfatin-1 protein was identified in interstitial mature Leydig cells. Yet in rats, NUCB2/nesfatin-1 became expressed in Sertoli cells upon Leydig cell elimination and was also detected in Leydig cell progenitors. Although NUCB2 mRNA levels did not overtly change in rat testis during pubertal maturation and after short-term fasting, NUCB2/nesfatin-1 content significantly increased along the puberty-to-adult transition and was markedly suppressed after fasting. In addition, testicular NUCB2/nesfatin-1 expression was up-regulated by pituitary LH, because hypophysectomy decreased, whereas human choriogonadotropin (super-agonist of LH receptors) replacement enhanced, NUCB2/nesfatin-1 mRNA and peptide levels. Finally, nesfatin-1 increased human choriogonadotropin-stimulated testosterone secretion by rat testicular explants ex vivo. Our data are the first to disclose the presence and functional role of NUCB2/nesfatin-1 in the testis, where its expression is regulated by developmental, metabolic, and hormonal cues as well as by Leydig cell-derived factors. Our observations expand the reproductive dimension of nesfatin-1, which may operate directly at the testicular level to link energy homeostasis, puberty onset, and gonadal function.