Published in

American Society for Microbiology, Journal of Virology, 6(70), p. 4045-4052, 1996

DOI: 10.1128/jvi.70.6.4045-4052.1996

Links

Tools

Export citation

Search in Google Scholar

Chimeric hepatitis B virus core particles as probes for studying peptide-integrin interactions.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

An RGD-containing epitope from the foot-and-mouth disease virus (FMDV) VP1 protein was inserted into the e1 loop of the hepatitis B virus core (HBc) protein. This chimeric protein was expressed at high levels in Escherichia coli and spontaneously assembled into virus-like particles which could be readily purified. These fusion particles elicited high levels of both enzyme-linked immunosorbent assay- and FMDV-neutralizing antibodies in guinea pigs. The chimeric particles bound specifically to cultured eukaryotic cells. Mutant particles carrying the tripeptide sequence RGE in place of RGD and the use of a competitive peptide, GRGDS, confirmed the critical involvement of the RGD sequence in this binding. The chimeric particles also bound to purified integrins, and inhibition by chain-specific anti-integrin monoclonal antibodies implicated alpha 5 beta 1 as a candidate cell receptor for both the chimeric particle and FMDV. Some serotypes of FMDV bound to beta 1 integrins in solid- phase assays, and the chimeric particles competed with FMDV for binding to susceptible eukaryotic cells. Thus, HBc particles may provide a simple, general system for exploring the interactions of specific peptide sequences with cellular receptors.