Published in

American Thoracic Society, American Journal of Respiratory Cell and Molecular Biology, 1(45), p. 136-144, 2011

DOI: 10.1165/rcmb.2009-0140oc

Links

Tools

Export citation

Search in Google Scholar

Notch Induces Myofibroblast Differentiation of Alveolar Epithelial Cells via TGF-ss/Smad3 Pathway.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Notch is an ancient cell signaling system that regulates cell fate specification. This study examined the role of Notch in epithelial-mesenchymal transition (EMT) and myofibroblast differentiation of cultured RLE-6TN cells, rat alveolar epithelial cells. Activation of Notch, either by ectopic expression of Notch intracellular domain or by coculture of RLE-6TN cells with L-Jagged1 cells, induced the expression of the smooth muscle α-actin (SMA) and other mesenchymal marker genes (collagen I and vimentin) and reduced the expression of the epithelial marker genes (E-cadherin, occludin and zonula occludens-1). Pharmacological inhibition of endogenous Notch signal significantly inhibited transforming growth factor-β (TGF-β)-induced SMA expression. Cell migratory capacity was increased by Notch. Luciferase assays revealed that CArG box and TGF-β-control element (TCE) are required for Notch-induced SMA gene transcription. DNA microarray analysis revealed that members of TGF-β family as well as Jagged1 were induced in RLE-6TN cells by Notch. Western blot analysis showed that Notch induced phosphorylation of Smad3 and TGF-β receptor typeI/ALK5 kinase inhibitor SB431542 markedly reduced Notch-induced SMA expression. Enzyme-linked immunosorbent assays confirmed the production of TGF-β1 from RLE-6TN cells by Notch. Immunohistochemistry of bleomycin-induced pulmonary fibrosis model and lung specimens from idiopathic interstitial pneumonias patients showed that Notch was strongly expressed in myofibroblasts as identified as SMA-positive cells. These data indicate that Notch induces myofibroblast differentiation through TGF-ß/Smad3 pathway which activates SMA gene transcription in a CArG- and TCE-dependent manner in alveolar epithelial cells. Our data also imply that Notch induces EMT phenotype with an increased migratory behavior in pulmonary fibrosis.