Published in

Springer, Journal of Materials Research, 2(22), p. 412-418, 2007

DOI: 10.1557/jmr.2007.0043

Links

Tools

Export citation

Search in Google Scholar

Observation of structural anisotropy in metallic glasses induced by mechanical deformation

Journal article published in 2007 by Wojtek Dmowski, Takeshi Egami
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have investigated atomic structure of a Fe81B13Si4C2 metallic glass after mechanical creep deformation. We determined the structure function and pair density function resolved for azimuthal angle using x-ray scattering and a two-dimensional detector. The results are analyzed by the spherical harmonics expansion, and are compared to the often-used simple analysis of the anisotropic pair density function determined by measuring the structure function along two directions with respect to the stress. We observed uniaxial structural anisotropy in a sample deformed during creep experiment. The observed macroscopic shear strain is explained in terms of local bond anisotropy induced by deformation at elevated temperature. The bond anisotropy is a “memory” of this deformation after load was removed. We showed that use of sine-Fourier transformation to anisotropic glass results in systematic errors in the atomic pair distribution function.