Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Cell Stem Cell, 2(11), p. 231-241, 2012

DOI: 10.1016/j.stem.2012.05.022

Links

Tools

Export citation

Search in Google Scholar

Pax3/7BP Is a Pax7-and Pax3-Binding Protein that Regulates the Proliferation of Muscle Precursor Cells by an Epigenetic Mechanism

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In mouse skeletal muscles, Pax7 uniquely marks muscle satellite cells and plays some important yet unknown functions at the perinatal stage. To elucidate its in vivo functions, we initiated a yeast two-hybrid screening to look for Pax7-interacting proteins and identified a previously uncharacterized Pax7- and Pax3-binding protein (Pax3/7BP). Pax3/7BP is a ubiquitously expressed nuclear protein, enriched in Pax7+ muscle precursor cells (MPCs), and serves as an indispensable adaptor for Pax7 to recruit the histone 3 lysine 4 (H3K4) methyltransferase (HMT) complex by bridging Pax7 and Wdr5. Knockdown of Pax3/7BP abolished the Pax3/7-associated H3K4 HMT activity and inhibited the proliferation of Pax7+ MPCs from young mice both in culture and in vivo. Id3 and Cdc20 were direct target genes of Pax7 and Pax3/7BP involved in the proliferation of Pax7+ MPCs. Collectively, our work establishes Pax3/7BP as an essential adaptor linking Pax3/7 with the H3K4 HMT to regulate the proliferation of MPCs.