Published in

Elsevier, Journal of Chromatography A, (1331), p. 1-9, 2014

DOI: 10.1016/j.chroma.2014.01.012

Links

Tools

Export citation

Search in Google Scholar

Ionic liquid-based solid phase microextraction necklaces for the environmental monitoring of ketamine

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wearable solid phase microextraction (SPME) devices consisting in necklaces and pins were developed for the environmental monitoring of ketamine in recreational places using ionic liquid as coating. SPME fibers obtained using both monocationic and dicationic polymeric ionic liquids were characterized in terms of morphology, film thickness, thermal stability and pH resistance. An average thickness of 30 ± 5 μm, an excellent thermal stability until 350°C and a very good fiber-to-fiber and batch-to-batch repeatability with RSD lower than 4% were some of the features of the developed coatings. A quantitation limit (LOQ) of 0.05 mg/m3 with a sampling time of 1 min proved the feasibility of the developed method for the quantitation of ketamine in air at low concentration levels. Finally, the capabilities of the fibers for the rapid SPME sampling of ketamine in recreational places were proved obtaining extraction efficiencies at least two-fold higher than those obtained using commercial devices and extraction recoveries ranging from 84.23.3% to 93.62.6% (n=3).