Published in

2010 3rd International Nanoelectronics Conference (INEC)

DOI: 10.1109/inec.2010.5424574

Wiley, Advanced Functional Materials, 15(19), p. 2423-2430, 2009

DOI: 10.1002/adfm.200900295

Links

Tools

Export citation

Search in Google Scholar

Characterization, Cathodoluminescence, and Field‐Emission Properties of Morphology‐Tunable CdS Micro/Nanostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High-quality, uniform CdS one-dimensional (1D) micro/nanostructures with different morphologies, e.g. microrods, sub-microwires and nanotips, are fabricated through a facile and effective thermal evaporation process. Their structural, cathodoluminescence and field-emission (FE) properties are systematically investigated. Microrods and nanotips exhibit sharp near band edge (NBE) emission and broad deep level (DL) emission, whereas sub-microwires show only the DL emission. A significant decrease in a DL/NBE intensity ratio is observed along a tapered nanotip towards a smaller diameter part. This behavior is understood under consideration of defect concentrations in the nanotips, as analyzed with high-resolution transmission electron microscopy (HRTEM). Field-emission (FE) measurements show that the nanotips possess best FE characteristics with a relatively low turn-on field of 5.28 V/¿m and the highest field-enhancement factor of 4819 among all 1D CdS nanostructures reported to date. The field-enhancement factor, turn-on and threshold fields are discussed related to structure morphology and vacuum gap variations under emission.