Published in

American Chemical Society, Journal of Physical Chemistry C, 19(116), p. 10743-10752, 2012

DOI: 10.1021/jp211775q

Links

Tools

Export citation

Search in Google Scholar

Dewetting of Patterned Silicon Substrates Leading to a Selective Deposition of Micellar-Based Nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have applied soft lithography for the indirect patterning of micellar poly(styrene-b-2-vinyl pyridine) diblock copolymers loaded with gold chloric acid with a pattern width below a micrometer. A combination of physical and chemical heterogeneities on the substrate induced a selective deposition of the micelles in between the relief structures without the need for additional liftoff or annealing steps. Micelle size, dip coating speed, and height of the relief pattern were identified as important parameters to achieve a successful selective deposition. Finally, a single layer of patterned gold nanoparticles was formed inside the micropattern using an oxygen plasma treatment.