Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Computational Intelligence Magazine, 1(7), p. 20-35, 2012

DOI: 10.1109/mci.2011.2176995

Links

Tools

Export citation

Search in Google Scholar

A Unified Framework for Symbiosis of Evolutionary Mechanisms with Application to Water Clusters Potential Model Design

Journal article published in 2012 by Minh Nghia Le, Yew-Soon Ong, Yaochu Jin ORCID, Bernhard Sendhoff
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This article presents a theoretic model for facilitating the emergence of productive search profiles transpiring from the symbiosis of gene (stochastic variation) and meme (lifetime learning) working in synergy. The evolvability measure of the symbiotic search profiles for each individual is quantified by means of statistical learning on distinct sample vectors encountered along the search. The most productive search profile inferred for an individual, as defined by evolvability measure, is subsequently used to work on it, leading to the self-configuration of solvers that acclimatizes to suit the given problem of interest. Empirical studies on representative problems are presented to reflect the characteristics of symbiotic evolution. Assessment made against several recent state-of-the-art evolutionary and adaptive search algorithms highlighted the efficacy of the theoretic formalism of evolutionary mechanisms in symbiosis for autonomic search. As the design of computationally cheap advanced empirical water models for the understanding of enigmatic properties of water remains an important and unsolved problem, the article presents an illustration of symbiotic evolution for the design of (H2O)n or water clusters potential model.