Published in

Cold Spring Harbor Laboratory Press, Genes & Development, 15(8), p. 1759-1771, 1994

DOI: 10.1101/gad.8.15.1759

Links

Tools

Export citation

Search in Google Scholar

Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The retinoblastoma gene product (pRB) constrains cell proliferation by preventing cell-cycle progression from the G1 to S phase. Its growth-inhibitory effects appear to be reversed by hyperphosphorylation occurring during G1. This process is thought to involve G1 cyclins and cyclin-dependent kinases (cdks). Here we report that the cell cycle-dependent phosphorylation of mammalian pRB is faithfully reproduced when it is expressed in Saccharomyces cerevisiae. As is the case in mammalian cells, this phosphorylation requires an intact oncoprotein-binding domain and is inhibited by a negative growth factor, in this case a mating pheromone. Expression of pRB in cln (-) mutants indicates that specific combinations of endogenous G1 cyclins, Cln3 and either Cln1 or Cln2 are required for pRB hyperphosphorylation in yeast. Moreover, expression of mammalian G1 cyclins in cln (-) yeast cells indicates that the functions of Cln2 and Cln3 in pRB hyperphosphorylation can be complemented by human cyclin E and cyclin D1, respectively. These observations suggest a functional heterogeneity among G1 cyclin-cdk complexes and indicate a need for the involvement of multiple G1 cyclins in promoting pRB hyperphosphorylation and resulting cell-cycle progression.