Published in

American Chemical Society, Environmental Science and Technology, 12(41), p. 4199-4204, 2007

DOI: 10.1021/es062417w

Links

Tools

Export citation

Search in Google Scholar

Carbon in Black Crusts from the Tower of London

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper investigates the origin, fluxes, and transformation of carbon compounds within black crusts on the stone walls of the Tower of London. The crusts were analyzed for elemental and organic carbon, including the water soluble fraction. Elemental carbon and low solubility compounds such as oxalates appeared to be conserved because of long residence times. Conversely, more soluble ions, like chloride and formate would be removed from the layers relatively quickly by rainfall. At higher organic carbon concentrations acetic acid may be produced within the crusts from biological transformations. Currently, traffic sources contribute to increasingly organic rich crusts. The deposition of elemental carbon to buildings darkens surfaces and has important aesthetic implications. The increased organic content may have further aesthetic consequence by changing the color of buildings to warmer tones, particularly browns and yellows. Management of historic buildings requires us to recognize the shift away from simple gypsum crusts to those richer in organic materials.