Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review B, 19(81)

DOI: 10.1103/physrevb.81.195307

Links

Tools

Export citation

Search in Google Scholar

Interface polarization coupling in piezoelectric-semiconductor ferroelectric heterostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present a dielectric continuum model approach for studying the electrical polarization properties of interface polarization coupled BaTiO3 , BaTiO3-ZnO , and ZnO-BaTiO3-ZnO thin-film structures consisting of several hundred nanometer thick layers. Our model augments the effects of electric field driven switchable polarization and depletion layer formation with spontaneous interface polarization coupling. Wurtzite-structure (piezoelectric) n -type ZnO and perovskite-structure (ferroelectric) highly insulating BaTiO3 layers were prepared and investigated. The coupling between the nonswitchable spontaneous polarization of ZnO and the electrically switchable spontaneous polarization of BaTiO3 causes strong asymmetric polarization hysteresis behavior. The n -type ZnO reveals hysteresis-dependent capacitance variations upon formation of depletion layers at the ZnO/BTO interfaces. We obtain a very good agreement between our model generated data and our experiment. Our model approach allows for derivation of the amount and orientation of the spontaneous polarization of the piezoelectric constituents and can be generalized toward multiple-layer piezoelectric-semiconductor ferroelectric heterostructures. We identify interface polarization coupled triple-layer ZnO-BTO-ZnO heterostructures as two-terminal unipolar ferroelectric Bi-junction transistor for use in memory storage.