Published in

Mary Ann Liebert, Tissue Engineering -Larchmont-, 4(12), p. 763-773

DOI: 10.1089/ten.2006.12.763

Links

Tools

Export citation

Search in Google Scholar

Development and Characterization of an Acellular Human Pericardial Matrix for Tissue Engineering

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aimed to produce an acellular human tissue scaffold with a view to recellularization with autologous cells to produce a tissue-engineered pericardium that can be used as a patch for cardiovascular repair. Human pericardia from cadaveric donors were treated sequentially with hypotonic buffer, SDS in hypotonic buffer, and a nuclease solution. Histological analysis of decellularized matrices showed that the human pericardial tissue retained its histioarchitecture and major structural proteins. There were no whole cells or cell fragments. There were no significant differences in the hydroxyproline (normal and denatured collagen) and glycosaminoglycan content of the tissue before and after decellularization (p > 0.05). There were no significant changes in the ultimate tensile strength after decellularization (p > 0.05). However, there was an increased extensibility when the tissue strips were cut parallel to the visualized collagen bundles (p = 0.005). No indication of contact or extract cytotoxicity was found when using human dermal fibroblasts and A549 cells. In summary, successful decellularization of the human pericardium was achieved producing a biocompatible matrix that retained the major structural components and strength of the native tissue.