Published in

Elsevier, Carbohydrate Polymers, 2(96), p. 536-544

DOI: 10.1016/j.carbpol.2013.04.022

Links

Tools

Export citation

Search in Google Scholar

Hyaluronan scaffolds via diglycidyl ether crosslinking: Toward improvements in composition and performance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel approach for hyaluronic acid (HA) crosslinking via diglycidyl ether (DGE) was investigated for scaffolds fabrication. In particular, HA sponges were obtained by lyophilization and then reacted with 1,4-butandiol diglycidyl ether (BDDGE) in heterogeneous conditions. Insoluble matrices with 4-20% of the reactive sites of HA modified were produced. The hydrogels showed high swelling capability depending on external stimuli; when equilibrated in physiological solution, pore ranged from 70 to130μm and G' values were in the range 2-10kPa. The matrices proved highly stable in cell culture conditions and to enzymatic degradation. A biological evaluation revealed good cellular viability within the scaffolds in two weeks experiments. The main achievement consists in that the novel conditions (BDDGE and heterogeneous reaction) permitted to obtain insoluble, directly structured and potentially applicable scaffolds with the lower content of crosslinker reported to date. The in vitro characterization outcomes propose the hydrogels as promising substrates for soft tissues regeneration.