Published in

John Libbey Eurotext, Epileptic Disorders, 3(13), p. 240-251, 2011

DOI: 10.1684/epd.2011.0462

Links

Tools

Export citation

Search in Google Scholar

Definition of the neurological phenotype associated with dup (X)(p11.22-p11.23)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to describe in detail the neurological features of nine patients carrying the recently reported microduplication at Xp11.22-11.23. Clinical and neurological examination, brain magnetic resonance imaging (except for two patients), electroencephalography and a neuropsychological assessment specific for language disturbances were performed in nine patients with microduplication at Xp11.22-11.23, disclosed by comparative genomic hybridisation array. Six patients were familial cases belonging to three unrelated pedigrees and three were sporadic cases. The patients had the following characteristics: mild dysmorphic facial features (except for two patients), mental retardation with moderate to severe global language deterioration, electroencephalographic epileptiform discharges during wakefulness and especially during sleep or electrical status epilepticus during slow sleep in younger cases, and negative brain magnetic resonance imaging. The main clinical features of this new microduplication syndrome were mild facial dysmorphisms, from increased electroencephalogram abnormalities during sleep to electrical status epilepticus during slow sleep, and mental retardation mainly involving language function in the absence of detectable brain lesions. In the absence of detectable brain lesions, speech delay may be associated with electrical status epilepticus during slow sleep or, alternatively, related to abnormal brain expression of a dosage-sensitive gene contained within the duplication region.